skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mallia, Franco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A new generation of observatories is enabling detailed study of exoplanetary atmospheres and the diversity of alien climates, allowing us to seek evidence for extraterrestrial biological and geological processes. Now is therefore the time to identify the most unique planets to be characterized with these instruments. In this context, we report on the discovery and validation of TOI-715 b, a $$R_{\rm b}=1.55\pm 0.06\rm R_{\oplus }$$ planet orbiting its nearby (42 pc) M4 host (TOI-715/TIC 271971130) with a period $$P_{\rm b} = 19.288004_{-0.000024}^{+0.000027}$$ d. TOI-715 b was first identified by TESS and validated using ground-based photometry, high-resolution imaging and statistical validation. The planet’s orbital period combined with the stellar effective temperature $$T_{\rm eff}=3075\pm 75~\rm K$$ give this planet an installation $$S_{\rm b} = 0.67_{-0.20}^{+0.15}~\rm S_\oplus$$, placing it within the most conservative definitions of the habitable zone for rocky planets. TOI-715 b’s radius falls exactly between two measured locations of the M-dwarf radius valley; characterizing its mass and composition will help understand the true nature of the radius valley for low-mass stars. We demonstrate TOI-715 b is amenable for characterization using precise radial velocities and transmission spectroscopy. Additionally, we reveal a second candidate planet in the system, TIC 271971130.02, with a potential orbital period of $$P_{02} = 25.60712_{-0.00036}^{+0.00031}$$ d and a radius of $$R_{02} = 1.066\pm 0.092\, \rm R_{\oplus }$$, just inside the outer boundary of the habitable zone, and near a 4:3 orbital period commensurability. Should this second planet be confirmed, it would represent the smallest habitable zone planet discovered by TESS to date. 
    more » « less
  2. Abstract JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperatureTeqand planetary radiusRpand are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community. 
    more » « less
  3. Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ . 
    more » « less
  4. null (Ed.)
  5. null (Ed.)